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1. Introduction
X-ray irradiation of photoresists, such as polymethylmethacrylate (PMMA), on
a silicon substrate is an important technique in micro fabrication used to obtain
structures and devices with a high aspect ratio. The process is composed of a
mask and a photoresist deposited on a substrate (with a gap between mask and
resist). The mask layer creates a desired pattern on the photoresist by
selectively allowing the transmission of irradiation from an X-ray beam. After
exposure, the photoresist is developed to remove the irradiated area, leaving
behind an imprint of the pattern in the form of exposed substrate and
photoresist walls. The pattern can now be used as a micromold. Electroplating
can then be used to fill the mold with a metal. The remaining unexposed part of
the photoresist can then be removed by an etchant, leaving the free standing
microstructure on the substrate.

Predictions of the temperature distribution in three dimensions in the
different layers (mask, gap, photoresist and substrate) and of the potential
temperature rise in the resist are essential for determining the effect of high
flux X-ray exposure on distortions in the photoresist due to thermal expansion.
A thorough understanding of the problem has been hampered by the
difficulties involved in finding solutions to elliptic or parabolic differential
equations describing temperature profiles in multilayers. Analytic solutions
to the system of these differential equations describing the process are not
easy to obtain due to the complication of the three-dimensional case and the
fact that the value at the interfacial boundary between layers is unknown.
Only a few studies have considered these kind of problems in the literature
(Ameel et al., 1994; Cole and McGahan, 1993; Kant, 1988; Madison and
McDaniel, 1989). Recently, Dai et al. (1997) have developed numerical heat
transfer models for thermal analysis in X-ray irradiated photoresists. The
steady state temperature distribution in the resist has been obtained by
solving the unsteady state differential equations in the case of two layers,
resist and substrate. In this article, we develop a numerical method to

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 8 No. 4, 1998, pp. 409–423.

© MCB University Press, 0961-5539

This research is supported by a Louisiana Educational Quality Support Fund grant, Contract 
No: 72-6000792.

Received February 1997
Revised June 1997

Accepted September
1997



HFF
8,4

410

investigate the temperature distribution in a commercially applicable X-ray
irradiation process, where the target consists of a mask, a resist and a
substrate (with a gap between mask and resist). In this method, the
preconditioned Richardson method will be applied for solving the Poisson
equation in the micro-scale to obtain the steady state temperature. A domain
decomposition algorithm will then be obtained based on the parallel “divide
and conquer” procedure, which overcomes the problem with the unknown
value at the interface. Such a method is simple and fast, which is compared
with the previous methods.

2. X-ray irradiation process
We now consider a commercially applicable X-ray irradiation process, where
the target consists of a mask, a resist and a substrate (with a gap between
mask and resist), as shown in Figure 1 (mask, resist and substrate are held in
place through a special clamping mechanism not shown in the figure). A gap
exists between mask and resist through which air circulates to prevent
overheating on the exposed area of the resist. The resist such as PMMA is
placed on a substrate, such as silicon. The mask, resist and substrate are very
thin, of the order of 300µm, with a square dimension of 5mm × 5mm, for
instance. The gap is also very thin, of the order of 50 µm, for instance. To
study the effect of the high flux X-ray exposure on distortions in the resist, it
is important to predict the temperature distribution in the resist and the
substrate. Heat from the X-ray beam is first transferred by conduction
through the mask. Owing to the very thin gap and the relatively low
temperature, radiation can be neglected. Also, convection in the gap is small
relative to conduction . Hence, without loss of generality, we assume that heat
is mainly transferred by conduction through the gap. Heat is then transferred

Figure 1.
Configuration of an 
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by conduction through the resist and substrate. As such, the governing
equations for temperatures at steady state in the mask, gap, resist and
substrate are given by the elliptic equations (Ameel et al., 1994; Incropera and
Dewitt, 1985; Ozisik, 1980):

Mask

(1)

Gap

(2)

Resist

(3)

Substrate

(4)

where T1, T2, T3, T4, K1, K2, K3, K4 are temperatures, and conductivities,
respectively. The source term g (x, y, z) depends on the mode of operation of the
system and can be determined by experiments. The boundary conditions are
described as follows. 

On the top surface of the mask, z = 0, where heat convection occurs,

(5)

where T∞ is the temperature of the surroundings and hc is the convection
coefficient.

On the bottom surface of the mask, z = H, we assume that the flux across the
interface does not change, 

(6)

Similarly, on the top surface of the resist, z = H + H1,

(7)
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On the bottom surface of the resist, z = 2H + H1 , 

(8)

A finite value h implies the discontinuity of the temperature at the interfaces.
When h →∞, the second boundary condition in Equation (8) reduces to T3 = T4,
which implies continuity of the temperature or perfect thermal contact at the
interface.

Under experimental conditions the side walls of mask, resist and substrate
(Figure 1), and the bottom surface of the substrate are kept at a constant
temperature or open to the surrounding so as to prevent heat from building-up.
As such, it is realistic to assume Ti = T∞, i = 1, 2, 3, 4, at the side walls, and T4
= T∞ at the bottom surface of the substrate.

3. Preconditioned Richardson iteration
Consider the three-dimensional Poisson equation

(9)

We let Tijk denote the approximation to T (i∆x, j∆y, k∆z), where ∆x, ∆y and ∆z
are the grid sizes in the x, y and z directions, respectively, i = 0, …, Nx, j = 0, …,
Ny and k = 0, …, Nz. We use the centered-difference equation, 

(10)

to approximate 

,

and so on. The finite difference scheme for Equation (9) can be expressed

(11)

Let

where Ax, Ay and Az are matrices and T
v

is a vector consisting of Tijk, i = 1, …,
Nx –1, j = 1, …, Ny –1 and k = 1, …, Nz –1. Then the system (11) can be written
in a vector form:
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(12)

It can be seen (Li and Hong, 1979) that the eigenvalues of Az are 4—∆z2 sin2 kπ∆z—2 , 
k = 1, …, Nz –1. Since ∆z is very small in the micro case, the ratio

is very large, where λmax(Az) and λmin(Az) are maximum and

minimum eigenvalues, respectively. This results in the system (12) being ill-
conditioned. Hence, common iteration methods, such as the Gauss-Seidel
method, will converge very slowly. To overcome this difficulty, we apply a
preconditioning technique and the Richardson iteration on Equation (12). This
gives 

(13)

where the preconditioner is chosen as follows:

(14)

and α is a relaxation parameter. It is well known from numerical linear algebra
that the iteration process converges if the iteration operator

(15)

has a spectral radius ρ(B) < 1. Further, the smaller ρ(B) is, the faster the
iteration converges. It can be shown that the eigenvalue of L–1

pre (Ax + Ay + Az)
has the form

(16)

When ∆z is very small compared to ∆x and ∆y, λijk is dominated by 4—
∆z2 sin2 kπ∆z—2 . 

Hence, λijk is close to 1. If one chooses a relaxation parameter α which is close
to 1, then the spectral radius ρ(B) will be much smaller than 1. Hence, we
conclude that the iteration method (13) converges very fast. 

We now apply the iteration method (13) to Equations (1)-(4) and write the
iteration scheme as follows:

λ
λ

max

min

( )

( )

A

A z
z

z

=
∆





0

1
2
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(17)

where m = 1, 2, 3, 4. At each iteration step, (Tm)(n+1)
ijk is assumed to satisfy the

discrete boundary conditions. Obviously, for each iteration step four tridiagonal
linear systems must be solved simultaneously. We will develop a domain
decomposition algorithm, which is based on a parallel “divide and conquer”
procedure obtained in the following section, to solve the above four tridiagonal
linear systems simultaneously.

4. Parallel divide and conquer procedure
As is known, the usual approach for solving the above tridiagonal linear system

(18)

is the Gaussian elimination technique. This approach results in a procedure
called the “divide and conquer” procedure, shown as follows:

(19a)

(19b)

(19c)

In the above procedure, βk, νk are calculated from k = 1 to k = n, while xk is
computed from k = n to k = 1. A similar procedure that is opposite in direction
can be expressed as

(20a)

(20b)

(20c)



Thermal 
analysis in X-ray

lithography

415

Further, if xO and xn+1 are not zero, one has 

(21a)

(21b)

(21c)

(21d)

and

(22a)

(22b)

(22c)

(22d)

Let n = 4N + 3 for convenience, we divide the system (18) into four subsystems,
which consist of the first N equations, the second N equations, the third N
equations and the last N equations. The (N + 1)th, the (2N + 2)th and the (3N +
3)th equations designate the interfacial equations. If the above four procedures
are combined together, then the parallel “divide and conquer” procedure based
on the domain decomposition method (Dai and Nassar, 1997; Ottega, 1988) can
be written as follows:
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5. Domain decomposition algorithm
To develop a numerical method for predicting the temperature profile, we
assume that there is a mesh grid of Nx × Ny × Nz for the mask, gap, resist and
substrate layers with the same grid size ∆x and ∆y, where (Nx + 1) ∆x = L, (Ny
+ 1) ∆y = L. Let ∆z be a grid size for the mask, resist and substrate such that (Nz
+ 1) ∆z = H, while ∆~z is a grid size for the gap such that (Nz + 1) ∆~z = H1. The
iteration scheme is equation (17) with discrete boundary conditions as follows:

(23a)

(23b)

(23c)
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(23d)

and on the other boundaries,

(23e)

{(Tm)(n+1)
ijk }(m = 1, 2, 3, 4) are computed by equation (17) line by line in the 

z-direction. As such, we express these equations as four tridiagonal linear
systems:

(24a)

(24b)

(24c)

(24d)

where i = 1, …, Nx and j = 1, …, Ny. Since {(Tm)(n+1)
ijk }(m = 1,2,3,4) is unknown 

at the interface between layers, the above four tridiagonal linear systems cannot
be solved. To overcome this difficulty, we apply the parallel “divide and
conquer” procedure for tridiagonal linear system. As such, a domain decompo-
sition algorithm for thermal analysis in the X-ray irradiation process can be
described as follows: 

Step 1. calculate the coefficients as listed in step 1 of the parallel “divide and
conquer” procedure

Step 2. substitute the following six equations 
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into discrete boundary Equations (23b)-(23d) to obtain

Step 3. solve for the rest of the unknowns in 

by step 3 of the procedure.
The above iterations are continued until a criterion for convergence is

satisfied.

6. Numerical examples
To demonstrate the applicability of the numerical procedure we investigate the
maximum temperature rise within the resist. PMMA and silicon were used as
the resist and substrate, respectively. Properties of mask, gap, PMMA and
silicon used in the analysis are listed in Table I. We followed the assumption in
Ameel (1994) that the resist and the substrate have a linear absorption
coefficient µ and are uniformly exposed with an irradiance WO. A commonly
used model for heat absorption in resist and substrate was chosen to be the
exponential expression: (Ameel, 1994)

(25)

where the coefficients WO and µ were 3.4 W/cm2 and 1—106 × 104/cm, respectively 
(Ameel, 1994). Expression (25) shows that heat absorbed from the synchrotron
X-ray irradiating the surface decreases exponentially with depth. For
convenience, we take the exposed area to be rectangular and on the left side of
the resist (Figure 1). However, it should be noted that in general the exposed
area can vary in shape and position by scanning the beam on the surface of the
resist. Hence, for applications in general, it is necessary to consider a three-
dimensional model. 

Property PMMA Silicon Mask Gap

k(W/cm/K) 1.98 × 10–3 1.50 2.01 0.152

Table I.
Thermophysical 
properties
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Two examples are illustrated as follows. The first example is to compare the
present method with our previous method for obtaining the steady state
temperature by solving the unsteady state differential equations (see Dai et al.,
1997). In this example, we only considered the resist and substrate case and
assumed that the thickness of the resist and substrate was 100µm, respectively.
A convection coefficient hc = 0.006W/cm2/K was chosen for the top of the resist.
We chose a mesh of 50 × 50 × 50 for each layer. The convergent solution was
obtained when Max|T(n+1) – T(n)|≤ 0.5 × 10–3 was satisfied. 

Based on the above parameters, the solution obtained gave a maximum
temperature rise within the resist of 5.735 K. This result is very close to 5.721 K
obtained by our previous method (Dai et al., 1997). Information on the
temperature profile can be obtained from the three-dimensional numerical
method. Figure 2 shows the temperature profile along the vertical axis at x =
0.7mm and y = 2.5mm, where the maximum temperature rise occurs. This
profile also agreed well with that obtained by our previous method. Further
results on the temperature field were given by the plot of isotherms in Figures
3 and 4. Results are also similar to those obtained by our previous method.
Figure 5 gives the temperature profiles along the vertical line in the resist
(where the maximum temperature rise occurs) for various grids when α = 0.95.
These results show that the present method is accurate and the solution is not
significantly affected by grid size.

Figure 2.
Temperature profile at 

x = 0.7mm and 
y = 2.5mm in the resist0.000 0.002 0.004 0.006 0.008 0.010
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A convergence history with various values of the relaxation parameter, α , is
listed in Table II. Results show that the convergence is fast if α is close to 1. This
coincides with that expected from the previous theoretical analysis.
Furthermore, it took only about 4 minutes CPU in a SUN workstation to obtain
the convergent solution when = 0.95, while our previous method (Dai et al.,
1997) took about 30 minutes CPU in the same workstation. This shows that the
present method is fast in converging to the steady state solution. 

The second example is to apply the present method to a commercially
applicable X-ray irradiation process, where the target consists of a mask, a resist

Figure 3.
Contour of the
temperature
distribution for the
exposed portion of the
resist at the cross
section of y = 2.5mm

Top surface (T1 = 305.7K)

Interface (T1 = 300K)

x = 1mm
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0

Z

X

Figure 4.
Contour of the
temperature
distribution at the cross
section of y = 2.5mm
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z = 200µm
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Z
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Figure 5.
Temperature profiles for
various grids along the
vertical line in the resist
(where the maximum
temperature rise occurs) 0.000 0.002 0.004 0.006 0.008 0.010
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and a substrate (with a gap between mask and resist), as shown in Figure 1. We
assumed that heat is transferred through the mask and the gap, g(x,y,z) = 0 for the
mask and the gap. Furthermore, we chose a convection coefficient hc =
0.006W/cm2/K for the top of the mask. We chose a mesh of 50 × 50 × 50 for each
layer. The convergent solution was obtained when Max|T(n+1) – T(n)|≤10–3

was satisfied.
Based on the above parameters, the solution obtained gave a maximum

temperature rise within the resist of 5.51K. Information on the temperature
profile can be obtained from the three-dimensional numerical method. Figure 6
shows the temperature profile along the vertical axis at x = 0.7mm and y =
2.5mm. Further results on the temperature field are given by the plot of
isotherms in Figures 7 and 8. 

A convergence history with various values of the relaxation parameter, α, is
listed in Table III. Results show that the convergence is fast if α is close to 1.
Again, this coincides with that expected from the previous theory. Furthermore,
it took only about ten minutes CPU in a SUN workstation to obtain the
convergent solution when α = 0.95.

α n

0.95 31
0.9 33
0.8 37

Table II.
Number of iterations 

as a function of 
relaxation parameter, 

α, for the first example

Figure 6.
Temperature profile

along the vertical line at
x = 0.7mm and 
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7. Conclusion
A three-dimensional numerical method was developed for simulating the
temperature profile in an X-ray irradiation process by applying a
preconditioning technique and the Richardson method for the Poisson equation
in the micro-scale. The domain decomposition algorithm was then obtained
based on the parallel “divide and conquer” procedure for solving tridiagonal
linear systems. Numerical results show that such a method is efficient. The
method can be also used for thermal analysis of thin multi-films, such as that
occurring in a laser chemical vapor deposition process. 
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